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Abstract

This review explores how remote sensing and artificial intelligence (AI) are being used to detect crop stress, focusing
on recent research from Malaysia and China. The findings show that China is leading the way, with widespread use
of advanced Al models like convolutional neural networks (CNNs), Vision Transformers (ViTs), and attention-based
systems. These models are supported by large datasets and strong government backing, making it possible to detect
crop stress early and accurately across large areas. Malaysia, on the other hand, is still in the early stages. Most studies
are limited to small-scale trials using drone imagery and more traditional machine learning models such as Support
Vector Machines (SVM) and Random Forest (RF). Despite these limitations, the results have been promising, especially
for key crops like oil palm and rice. However, Malaysia faces challenges including a lack of localised data, limited
Al infrastructure, and minimal policy support. To move forward, future efforts should focus on developing locally
relevant models, using multiple types of data together, and fostering collaboration between researchers, policymakers
and farmers. There’s also a need to make sensing technologies more affordable and accessible to those working on
the ground. In summary, while China has already laid a strong foundation for Al-powered crop stress detection,
Malaysia has the potential to catch up provided that there is strategic investment in research, infrastructure and farmer
engagement. With the right support, both countries can strengthen their agricultural resilience and better prepare for
climate-related challenges.
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Introduction

Crop stress, driven by environmental, biological, or
nutritional factors, remains a major cause of yield loss
in agriculture worldwide. As global food demand rises
and climate variability intensifies, timely and accurate
detection of crop stress has become increasingly critical.
Traditional field-based stress assessment methods are
labour-intensive, time-consuming, and spatially limited,
making them impractical for large-scale monitoring
(Thuoma & Madramootoo, 2017).

Remote sensing, using satellite or drone imagery,
enables continuous monitoring by capturing key data
such as vegetation reflectance, thermal signatures, and
canopy structure. Vegetation indices like the Normalised

Difference Vegetation Index (NDVI), Enhanced
Vegetation Index (EVI) and Normalised Difference Water
Index (NDWI) are commonly employed to assess plant
health, water stress and biomass (de la Iglesia Martinez
& Labib, 2023).

Recent advancements in sensor technology and
increased temporal data availability through platforms
like Sentinel-2 (S-2), Landsat 8 (L-8), and Unmanned
Aerial Vehicles (UAVs) provide high-resolution data
that enhances crop stress monitoring. The integration of
Artificial Intelligence (Al), including Machine Learning
(ML) and Deep Learning (DL), further improves data
analysis and decision-making in precision agriculture.
models, allows for better interpretation of remote sensing
data.
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These Al models are adept at detecting subtle stress
patterns and classifying stress types, often outperforming
traditional threshold-based methods (Janga et al. 2023).
Algorithms such as Random Forest, Support Vector
Machines, and Decision Trees are effective for classifying
crop stress based on diverse data sources.

Furthermore, advanced models like Convolutional
Neural Networks (CNN) and Long Short-Term Memory
(LSTM) networks have gained popularity for their ability
to capture both spatial and temporal dependencies in
the data (Lindemann et al. 2021). By combining remote
sensing with Al, these methods enhance stress detection
accuracy and support real-time decision-making in
precision agriculture.

Despite growing research, comparative analyses of
these techniques across different agroecological zones
remain limited. China and Malaysia offer contrasting
agricultural environments: China’s temperate regions
feature intensive cropping systems, while Malaysia’s
tropical climate supports year-round cultivation.
Evaluating how remote sensing and Al-based methods
perform in detecting crop stress in these regions is crucial
for developing adaptable, transferable models.

This review aims to address this gap by examining the
application of remote sensing and Al in detecting crop
stress in China and Malaysia. It will assess the data sources,
algorithmic approaches, and classification methods used
in recent studies, evaluate their effectiveness, and identify
key challenges and future directions. The review seeks to
contribute to the development of accessible, intelligent
monitoring tools to enhance agricultural resilience amidst
growing climatic and environmental challenges.

Literature review
Remote sensing techniques for crop stress detection

Remote sensing (RS) has emerged as a pivotal technology
for monitoring crop stress, offering non-destructive, real-
time, and large-scale observation capabilities. Satellite
platforms, including Sentinel-2 (S-2), Landsat 8 (L-8),
and the Moderate Resolution Imaging Spectroradiometer
(MODIS), are commonly used for their ability to capture
continuous spectral data across broad geographic areas.
These sensors measure reflectance in Visible (VIS), Near-
Infrared (NIR), and Shortwave Infrared (SWIR) bands,
which can be used to derive vegetation indices such as
the Normalized Difference Vegetation Index (NDVI),
Enhanced Vegetation Index (EVI), and Normalized
Difference Water Index (NDWI). These indices are highly
correlated with various plant health indicators, including
vigor, chlorophyll content, and water status (Ma et al.
2019). For instance, Zhang et al. (2023) found that NDWI
was more effective than NDVI in detecting early drought
stress in maize fields in eastern China. Alongside satellite-
based platforms, unmanned aerial vehicles (UAVs)
equipped with multispectral and thermal cameras have
gained popularity for high-resolution, field-level stress
detection. UAVs provide precise spatial details, making
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them invaluable for detailed crop stress analysis. In
Malaysia, UAVs have been successfully used to monitor
nutrient deficiencies and disease stress in oil palm and
rice fields, achieving sub-meter accuracy in detecting
symptoms such as chlorosis and canopy degradation
(Rendana et al. 2015). However, operational challenges
related to UAVs include their limited flight range and
dependence on favourable weather conditions.

Artificial intelligence algorithms in stress
classification

The integration of artificial intelligence (AI) algorithms has
significantly transformed the analysis and interpretation
of remote sensing data. Traditional machine learning
(ML) models such as Random Forest (RF), Support
Vector Machines (SVM), and Gradient Boosting (GB)
have been extensively used for crop stress classification
tasks. These models excel at handling multivariate
input from different sensors and are often effective with
moderate-sized labelled datasets (Haider et al. 2024). For
example, RF was applied in northern China to classify
wheat fields under varying drought stress levels, achieving
an impressive classification accuracy of 88% using
multispectral imagery and soil moisture data.

Deep learning (DL) models, particularly Convolutional
Neural Networks (CNNs), offer enhanced performance by
automatically extracting spatial and spectral features from
imagery data, which improves stress detection accuracy.
Long Short-Term Memory (LSTM) models, on the other
hand, are used to capture temporal dynamics, which are
crucial for monitoring stress progression throughout the
growing season (Paul et al. 2025).

In Malaysia, Convolutional Neural Networks (CNN)
trained on UAV imagery achieved 94% accuracy in
distinguishing between fungal disease and nutrient stress
in rice fields (El Sakka et al. 2025). However, deep
learning methods are computationally intensive and
require large, labelled datasets, which may limit their
applicability in regions with fewer resources.

Comparative studies and regional applications

While there has been progress in using Al and remote
sensing technologies for crop stress detection, comparative
studies across different regions are still limited. In China,
significant strides have been made in satellite data
assimilation and operational crop monitoring. Meanwhile,
Malaysia has leaned more toward UAV-based approaches,
driven by smaller field sizes and persistent cloud cover in
the region. The varying agroecological conditions, such as
soil type, crop variety, and climate, significantly impact
the performance of AI models, highlighting the need for
localised calibration (Bracho-Mujica et al. 2023).

The gap between regional applications, transfer learning
and domain adaptation have been proposed as potential
solutions. For instance, a CNN model trained on maize
data from China was successfully adapted to Malaysian
corn fields with minimal retraining, demonstrating the
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feasibility of cross-country stress detection models when
appropriate adjustments are made (Zou et al. 2024).

Despite these promising results, challenges remain in
ensuring standardised ground truth data collection and
achieving interoperability between different sensors and
platforms. These issues need to be addressed to improve
the effectiveness and applicability of remote sensing and
Al-based stress detection systems globally.

Materials and method

This review systematically synthesises recent advances
in remote sensing and artificial intelligence (AI) for
crop stress detection, with a particular focus on studies
conducted in China and Malaysia. The methodology
included structured literature searches, classification
of technological approaches, and comparative regional
analysis to capture current trends and applications.

Literature collection and selection

A total of 785 documents were initially retrieved through
a comprehensive search conducted across five major
scientific databases such as Scopus, Web of Science, IEEE
Xplore, ScienceDirect, and Google Scholar, spanning the
period from January 2014 to March 2024. The search
strategy incorporated combinations of keywords related
to remote sensing, artificial intelligence, and crop stress,
linked using Boolean operators such as AND, OR, and
NOT. For example, search strings included: “remote
sensing” AND “crop stress”, “UAV” OR “satellite
imagery” AND “AI”, and “machine learning” AND “plant
stress” AND (Malaysia OR China). The retrieved literature
comprised peer-reviewed journal articles, conference
proceedings, and technical reports.

Ensuring relevance and quality, a two-stage screening
process was implemented. The first stage involved
title and abstract screening to eliminate duplicates
and irrelevant studies, narrowing the selection to 312
records. The second stage involved a full-text review,
applying specific inclusion criteria: (i) use of remote
sensing platforms such as Unmanned Aerial Vehicles
(UAVs), Sentinel-2, or Landsat 8; (ii) application of Al
or machine learning techniques including Support Vector
Machines (SVM), Random Forest (RF), Convolutional
Neural Networks (CNN), and Long Short-Term Memory
(LSTM); and (iii) empirical field trials or experiments
conducted in Malaysia or China. Ultimately, 40 studies
were included in the final review. The entire selection
process is visually summarised in Figure I to enhance
transparency and reproducibility.

Records identified from:
Databases

(n=785)

l

Records screened

Identification

Records excluded

(n=312) (n=173)

Screening
v

v
Full text article assessed
for eligibility

Full text articles
excluded
(n=21)

(n=139)

Eligifiltration

|

Studies included in
review

(n=40)

Included

Figure 1. A flowchart to visually represent entire systematic
literature review

Data extraction and review parameters

Each study was analysed for crop stress types (e.g., water
stress, nutrient deficiency, pest/disease, salinity), remote
sensing platforms (satellites like Sentinel-2, Landsat 8;
UAVs; ground-based sensors), and vegetation indices such
as NDVI, NDRE, CWSI, and PRI. Al techniques including
Random Forest (RF), Support Vector Machines (SVM),
Convolutional Neural Networks (CNN), and Long Short-
Term Memory (LSTM) models were documented, with
performance evaluated using metrics such as classification
accuracy, Fl-score, RMSE, and AUC (Adugna et al.
2022). The dataset was then categorised by stress type,
sensor, Al method, and region for cross-comparison
(Martinez-Rios et al. 2021).

Regional contextualisation

Regional agricultural contexts were factored into the
analysis. In China, large, mechanised farms often use
satellite-based remote sensing for large-scale stress
detection, while Malaysia’s smallholder farms and tropical
conditions (e.g. cloud cover, high rainfall) favour UAV-
based solutions (Nahiyoon et al. 2024). Agroclimatic
data from national meteorological agencies added
environmental context to interpret crop stress variability
across both regions.

Limitations of the reviews
This review is confined to stress detection during active

crop growth and excludes studies on yield prediction or
genomic research. English-language publications were
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prioritised, potentially excluding region-specific studies
in other languages. Despite this, the review presents a
useful representation of advancements in remote sensing
and Al for crop stress monitoring in the two countries.

Results and discussion

Remote sensing combined with Al has transformed crop
stress detection, offering precise, real-time assessments of
drought, nutrient imbalance, disease, and salinity impacts.
The reviewed studies from China and Malaysia reveal a
consistent increase in the use of both satellite and UAV
platforms integrated with Al algorithms for improved
stress monitoring.

Figure 2 highlights the growth in studies using Al and
imaging sensors from 2014 to 2024. Initial research was
limited (3 studies in 2014, 6 in 2015), with notable growth
from 2017 onwards. The field expanded significantly in
2019 (26 studies) and surged in 2020 (65) and 2021 (61),
likely due to improved Al tools and heightened demand
for high-throughput agricultural monitoring. This trend
continued post-pandemic, peaking at 76 studies in 2024.
The data underscore increasing reliance on Al and imaging
technologies to address climate-driven stress factors and
precision agriculture needs.

Figure 3 summarises the total number of studies
retrieved from four major scientific databases Springer
(SPR), ScienceDirect (SD), PubMed (PM), and Web
of Science (WOS)before and after screening using the
Automated Systematic Review (ASReview) tool. The
figure provides insight into the efficiency of the screening
process in identifying relevant studies for inclusion in the
review. Initially, 974 articles were retrieved from SPR,
out of which 434 were deemed relevant after ASReview
screening, while 540 were categorised as irrelevant.
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Similarly, SD yielded 122 articles, with 68 retained and
54 excluded. PM returned the highest number of initial
records, with 1,114 studies retrieved; after screening,
567 were identified as relevant and 547 as irrelevant.
Lastly, WOS contributed 494 articles, of which 321 were
considered relevant and 173 were excluded. These results
reflect the high volume of literature available in this
field and underscore the importance of using systematic
and semi-automated screening tools like ASReview to
efficiently manage and curate large datasets during the
review process.

Crop stress detection in China: Satellite and Al
integration

Table I provides a comprehensive comparison of studies
conducted in China that utilised Satellite Imagery
(SI) for Crop Stress Detection and Classification
(CSDC), highlighting the diversity of satellite sensors,
methodologies, and accuracy metrics involved. Jiang
et al. (2020) employed Sentinel-2 (S2) multispectral
data for large-scale crop mapping, achieving an overall
accuracy (OA) of 94%, demonstrating the effectiveness
of high-resolution multispectral imagery in agricultural
monitoring. Similarly, Liu et al. (2023) enhanced
temporal information by leveraging time-series S2
images to produce a cropping intensity map at 10 m
resolution, attaining an even higher OA of 96.68% and
Kappa Coefficient (KC) of 0.90, indicating strong model
reliability.

In contrast, Zhai et al. (2020) utilised an improved
Linear Isometric Mapping (L-ISOMAP) dimensionality
reduction approach combined with Random Forest (RF)
on Landsat 8 (L8) imagery to automatically classify crops
in Northeast China. While slightly lower, their reported
OA of 83.68% is still acceptable, given the methodological
complexity and spatial scale.

2020 2022 2024 2026

Year of publication

Figure 2. Overview of the total number of studies published by year using Al and imaging sensors

to investigate plant stress responses.
Source: Walsh et al. 2024
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Figure 3. Summary of the total number of studies retrieved by SLR, which targeted Al and imaging

sensors investigating plant stress.
Source: Walsh et al. 2024

Table 1. Comparison of crop stress detection accuracy in China using satellite imagery

Study Satellite sensor Method / Model Accuracy metrics Reference
Large-Scale and High-Resolution . Multispectral image oo Jiang et al.
Crop Mapping in China Sentinel-2 classification Overall accuracy: 94% 2020

3 3 3 . 0/ .
Cropping Intgns1ty Map of China Sentinel-2 Time-series analysis Overall accuracy: 96.68%; Liu et al. 2023
(10 m resolution) Kappa: 0.90

. T B N

Autom?tlc Crop Classification in Landsat 8 Improved L-ISOMAP Overall accuracy: 83.68%  Zhai et al. 2020
NE China Random Forest
ClrrMap250: Annual Irrigated MODIS & Multi-source fusion and CA;ZE?C}(;;ZI;IE :r(i/il:::}rllot Zhang et al.
Cropland Maps Landsat annual mapping g 2020

Crop Mapping with Combined Use
of European and Chinese Satellite

Data

Improving the Accuracy of

explicitly stated)

Sentinel-2 &
GF-1

Adapted ESA approach;

. )
classification algorithms Overall accuracy: 94-97%

Sentinel-2 & LSTM RMSE: 0.201 t/ha;

Fan et al. 2021

Satellite-Based High-Resolution
Yield Estimation

Evaluation of Crop Type
Classification with Different High
Resolution Satellite Data Sources

A Refined Crop Drought
Monitoring Method Based on the
Chinese GF-1 Wide Field View
Data

Comparative Analysis of Chinese
High-Resolution Satellite Data for
Sugarcane Classification Based on
U-Net Model

Categorisation by Leveraging
CNNs and Remote Sensing
Satellite Imagery for Crop Analysis
in Arid Environments

LSTM, RF, GBDT, SVR

Jin et al. 2017

ZY-1 02D RF RMSE: 0.260 t/ha
GF-1, GF-1: 93-94%; Sentinel-2:
Sentinel-2, Random Forest 96-98%; Landsat 8: Fan et al. 2021
Landsat 8 97-98%
Chang et al.

GF-1 WFV EVI2-based MPDI Accuracy above 95% 2018

GF-2 outperformed

. . Chen et al.

GF-1 & GF-2  U-Net deep learning model GF-1 in OA and Kappa 2022

coefficient

. ResNet and EfficientNetV2

Landsat-8 CNN architectures achieved highest Malhan et al.

(ResNet, EfficientNetV2)

classification accuracy

2024
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A broader mapping effort was presented by Zhang
et al. (2024) through the Cropland Irrigation Map 250
(CIrrMap250) dataset, which integrates data from
Moderate Resolution Imaging Spectroradiometer
(MODIS) and L8 for annual irrigated cropland monitoring.
Although specific accuracy values were not reported,
the approach emphasised multi-source data fusion,
underscoring the importance of combining medium- and
high-resolution datasets for enhanced spatial-temporal
analysis.

Fan et al. (2021) explored two aspects: first, they
compared S2 and China’s Gaofen-1 (GF-1) satellite data
in crop classification, applying an adapted European Space
Agency (ESA) methodology and achieving a notable 94
— 97% OA, showcasing the effectiveness of combining
European and Chinese satellite technologies. Second,
they evaluated classification performance across different
satellites using an RF classifier, reporting GF-1 (93 —
94%), S2 (96 — 98%), and L8 (97 — 98%), reinforcing
the superior accuracy of high-resolution platforms.

Jinetal. (2017) evaluated yield estimation performance
using S2 and Ziyuan-1 02D (ZY-1 02D) satellites and
multiple machine learning models. The Long Short-
Term Memory (LSTM) model produced the best result
with a Root Mean Square Error (RMSE) of 0.201 t/
ha, outperforming RF, Gradient Boosted Decision
Trees (GBDT), and Support Vector Regression (SVR),
emphasising the value of deep learning in capturing yield
variability. In terms of drought detection, Chang et al.
(2018) used GF-1 Wide Field View (GF-1 WFV) data
with a refined Enhanced Vegetation Index 2 (EVI2)-based
Modified Perpendicular Drought Index (MPDI), reporting
over 95% accuracy in monitoring drought stress, proving
the potential of vegetation indices in detecting abiotic
stress conditions.

A more focused crop-specific analysis by Chen et al.
(2022) involved sugarcane classification using GF-1 and
Gaofen-2 (GF-2) images, implementing a U-Net deep
learning model. The results showed that GF-2 imagery
yielded better classification outcomes in terms of OA and
KC, highlighting the role of spatial resolution in deep
learning-based segmentation tasks.

Finally, Malhan et al. (2024) applied Convolutional
Neural Networks (CNNs) such as Residual Network
(ResNet) and EfficientNetV2 on L8 for crop stress
analysis in arid environments. Both CNN models
delivered the highest classification accuracies among
tested architectures, reaffirming the emerging importance
of advanced deep learning models in crop monitoring.

This comparative analysis underscores the diversity
of approaches in crop stress detection research
across China. High-resolution satellite platforms
such as Sentinel-2 (S2), Gaofen-2 (GF-2), and
Landsat-8 (L8) consistently deliver strong classification
results, particularly when paired with Machine
Learning (ML) and Deep Learning (DL) techniques.
Moreover, the fusion of multi-source data and temporal
information further improves accuracy, as observed
in studies leveraging time-series or multi-sensor
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approaches. These findings support continued investment
in high-resolution Earth Observation (EO) systems and
algorithmic innovation to enhance agricultural monitoring
and decision-making under changing climate conditions.

Table 2 presents a comparative overview of various
Artificial Intelligence (AI) models applied in the
detection and classification of crop stress across different
agricultural contexts in China. These studies highlight the
integration of ML and DL algorithms with diverse imaging
sources such as satellites, drones, and Red-Green-Blue
(RGB) sensors. A range of crop types such as cotton, rice,
wheat, maize, potato and multiple mixed crops—were
targeted using a combination of Convolutional Neural
Networks (CNNs), Recurrent Neural Networks (RNNs),
and transformer-based architectures.

For example, the detection of cotton water stress
employed DL models like Visual Geometry Group
16 (VGG16), Residual Network 18 (ResNet-18), and
MobileNetV3 (MNv3), using thermal imagery to identify
physiological stress signatures associated with water
deficits (AZO AI News, 2024). Similarly, time-series
data from Sentinel-1A Synthetic Aperture Radar (SAR)
was processed using sequential models like Long Short-
Term Memory (LSTM) and Gated Recurrent Unit (GRU)
to support early classification of multiple crop types,
demonstrating the effectiveness of temporal data in
monitoring early phenological changes (Zou et al. 2019).

In the case of rice and potato crops, more specialised
models such as the Attention-Based Depthwise Separable
Neural Network with Bayesian Optimisation (ADSNN-
BO) and Retina-UNet-Ag were employed to detect
disease and stress symptoms using close-range leaf or
aerial imagery (Chen et al. 2022 and Khan et al. 2021).
These models were tailored to handle the complexity of
fine-grained image features, allowing for more precise
detection. Likewise, the Vision Transformer (ViT) and
EfficientNetB0O (ENBO) architectures were successfully
used with RGB images to identify nitrogen stress in maize,
reflecting the growing trend of applying transformer
models in agricultural computer vision tasks (Li et al.
2024).

While satellite-based systems such as those using
S2, GF-2, and L8 offer the advantage of wide spatial
coverage and frequent monitoring at relatively lower
costs, they are not without challenges. Limitations such
as cloud interference, relatively low spatial resolution, and
temporal gaps between satellite passes may restrict their
effectiveness in capturing rapid or highly localised stress
events. In contrast, drone-based and proximal sensing
technologies offer higher resolution data but are often
constrained by scalability and operational complexity.

Overall, the table emphasises the growing diversity of
Al approaches tailored for specific imaging modalities and
crop stress scenarios in China. It underscores the need
for a balanced consideration of resolution, coverage, cost,
and model complexity when designing Al-powered crop
stress detection systems for precision agriculture.
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Table 2. Al model comparison for crop stress detection in China

Study Al model(s) Satellite/Imaging Target crop/ Reference
source Stress type

Deep learning for cotton VGG16, ResNet-18, MobilenetV3, Thermal imagery Cotton water AZO Al News,

water stress detection DenseNet-201, CSPdarknet53 stress 2024

Early crop classification
using sentinel-1A

Crop monitoring with pre-  DenseNet121, ResNet50

trained CNNs

CropQuant-Air for wheat
trait analysis

YOLOvV7, XGBoost

Rice disease detection
with ADSNN-BO neural network with Bayesian

optimisation
Potato crop stress Retina-UNet-Ag
identification
Vision Transformer (ViT),
EfficientNetBO

Nitrogen stress detection
in maize

1D CNN, LSTM RNN, GRU RNN

Attention-based depthwise separable

Sentinel-1A SAR
time series

Multiple crops  Zou et al. 2019

Satellite imagery Various crops Yang et al.
2024

Drone imagery Wheat Zhao et al.
2023

Rice leaf images Rice diseases Chen et al.
2022

Aerial images Potato crop Khan et al.
stress 2021

RGB images Maize nitrogen  Li et al. 2024

stress

The advantages of satellite-based systems are clear,
offering the ability to monitor vast areas with relatively
low operational costs. However, satellite systems also face
limitations such as cloud cover, coarse spatial resolution,
and longer revisit times, which may hinder their ability
to detect sudden or localised stress events in crops.

Crop stress detection in Malaysia using remote
sensing and Al

In Malaysia, the adoption of UAV-based remote sensing
technologies is more prevalent than satellite systems due
to smaller farm sizes and persistent cloud cover in the
tropical climate. These conditions limit the usability of
satellite imagery, making UAVs a practical alternative for
timely crop monitoring. For instance, Rahman et al. (2023)
used UAV-mounted multispectral sensors combined with
SVM (Support Vector Machines) to detect water stress
and pest damage in oil palm plantations, achieving 95%
classification accuracy.

Recent studies have applied various remote sensing
platforms and Al algorithms to detect a range of crop
stresses. Chong et al. (2017) demonstrated that spectral
reflectance analysis could effectively identify nutrient
deficiencies across different crops using vegetation
indices. Rudiyanto et al. (2023) integrated SVM models
with Sentinel-1 SAR (Synthetic Aperture Radar) imagery
to track rice growth stages, highlighting the potential of
satellite radar data for crop stress monitoring.

In oil palm plantations, Baharim et al. (2023) applied
SVM and RF (Random Forest) classifiers to detect
Ganoderma basal stem rot using UAV multispectral
imagery, emphasizing the role of early disease diagnosis.
Similarly, Lau et al. (2023) used deep learning models
such as YOLOv4 and YOLOvV4-Tiny to detect stress
symptoms in chili and eggplant, showing the practicality
of UAV-based monitoring in small and medium-scale
farming.

Zainuddin et al. (2023) utilised CNN (Convolutional
Neural Networks) with RGB images to identify diseases
like rust and blight in maize. Anuar et al. (2022) compared
the performance of CNN, KNN (K-Nearest Neighbors),
and SVM models for detecting stress in various crops
using RGB imagery, underscoring the adaptability of Al
in agricultural diagnostics.

Nazsoft Tech (2024) further demonstrated the
integration of deep learning in real-time agricultural
monitoring by employing GoogLeNet and ResNet-101
models to detect nutrient deficiencies and diseases using
camera-based imaging. Together, these studies reflect
Malaysia’s growing emphasis on leveraging remote
sensing and Al technologies for precise, early detection of
crop stress, which is essential for sustainable agricultural
practices.
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Table 3. Recent studies on crop stress detection and Al applications in Malaysia using remote sensing

Crop type Stress type/Application Al methodology Remote sensing platform  Reference

Various Nutrient stress Spectral reflectance analysis Remote sensing Chong et al. 2017

crops

Rice Growth stages (stress Support Vector Machine Sentinel-1 SAR Rudiyanto et al.
indicator) (SVM) 2023

Oil palm Ganoderma basal stem rot ML classifiers (SVM, RF) UAV multispectral Baharim et al.

imagery 2023

Chili, General stress proxy YOLOv4, YOLOvV4-Tiny UAV imagery Lau et al. 2023

Eggplant

Maize Common rust and blight CNN RGB imaging Zainuddin et al.
diseases 2023

Various General plant disease (stress CNN, KNN, SVM RGB imaging Anuar et al. 2022

crops proxy)

Various Nutrient deficiency, disease GoogLeNet, ResNet-101 Camera-based imaging Nazsoft Tech, 2024

crops

Challenges and future directions in crop stress
detection using remote sensing and Al in Malaysia
and China

One of the key limitations in crop stress detection in
both Malaysia and China is the quality and consistency
of remote sensing data. In Malaysia, persistent tropical
cloud cover disrupts optical satellite imaging, reducing
its effectiveness for timely crop monitoring (Zhao et
al. 2023). In contrast, China’s more advanced satellite
infrastructure is constrained by inconsistent coverage and
insufficient spatial resolution in certain regions, making it
difficult to detect localised stress conditions (Zhang et al.
2024). Furthermore, current temporal resolutions often fail
to capture rapid changes in crop health, which are critical
for timely management interventions (Li et al. 2024).
Data integration presents another major challenge,
particularly in fusing data from satellites, unmanned aerial
vehicles (UAVs), and ground-based sensors. Variations
in spatial and temporal resolution across these platforms
complicate data fusion efforts. In Malaysia, where
smallholder farms dominate, linking remote sensing
outputs with ground-based agronomic measurements,
such as soil moisture and canopy temperature, remains
limited (Chong et al. 2017). In China, ongoing efforts
to integrate synthetic aperture radar (SAR) and optical
satellite data are still under development, restricting the
precision of monitoring systems (Zhang et al. 2024).
The deployment of artificial intelligence (AI) models,
such as convolutional neural networks (CNNs) and You
Only Look Once (YOLO), faces additional barriers. These
models require significant computational resources and
large, high-quality annotated datasets, which are often
scarce in tropical agricultural systems. In particular,
datasets targeting specific stressors, such as nutrient
deficiencies or crop diseases, are limited, increasing the
risk of overfitting and reducing the models’ adaptability
across diverse agroecosystems (Anuar et al. 2022).
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A further constraint is the limited availability of
ground-truth data for model calibration and validation.
In Malaysia, small-scale farms typically lack sensor
infrastructure for systematic field data collection (Chong
et al. 2017). In China, the sheer scale and variability of
agricultural landscapes make consistent in-field validation
resource-intensive, thus limiting the scalability of Al-
driven monitoring platforms.

Finally, cost and scalability remain significant
obstacles. In Malaysia, smallholder farmers often
cannot afford UAVs, high-resolution satellite imagery,
or Al-based analysis platforms (Lau et al. 2023). Even
in China, despite stronger technological infrastructure,
the operational costs of large-scale, high-frequency
monitoring limit accessibility for smaller producers (Li
et al. 2024). Overcoming these economic and technical
barriers is essential to enable broader adoption and
improve the effectiveness of remote sensing and Al-based
crop stress detection systems.

Future direction and suggestion

Addressing current limitations will require advances in
remote sensing technologies. Emerging low-cost, high-
resolution satellites and UAVs, including those equipped
with Synthetic Aperture Radar (SAR) and microwave
sensors, can overcome issues like cloud cover and low
spatial resolution, improving the reliability of crop stress
monitoring in Malaysia and China (Zhao et al. 2023).
These tools promise better temporal and spatial coverage
for more accurate and timely assessments.

A major direction is the integration of multisource
data from satellites, drones, and ground sensors combined
with agronomic inputs such as soil moisture and weather
conditions. Al-powered data fusion will be vital for
merging these diverse datasets and delivering real-time
insights to farmers (Anuar et al. 2022). Yet, developing
robust algorithms for this purpose remains a key research
priority.
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Optimising Al models to reduce computational
demands is also critical. Efforts are underway to make
models lighter and compatible with smartphones or edge
devices, improving access for smallholders in Malaysia
and enabling broader scalability in China’s large-scale
farms (Lau et al. 2023).

The development of real-time decision support systems
(DSS) using remote sensing and Al could also transform
crop management. In Malaysia, such systems could
support timely irrigation decisions, while in China, early
detection of disease outbreaks could help minimize crop
losses (Chen et al. 2020). Integrating DSS into existing
farming practices would enhance both sustainability and
productivity.

Collaborative, open-source platforms could accelerate
progress by encouraging data and model sharing among
researchers and farmers. This approach would support
continuous refinement and wider adoption of stress
detection systems in both countries (Zhang et al. 2024).

Localised, region-specific models offer another
promising avenue. By accounting for unique soil and
climate conditions, these models can deliver more targeted
stress management. Such personalisation is especially
relevant for Malaysia’s small farms and China’s diverse
agricultural zones (Chong et al. 2017).

Finally, capacity building is essential. In Malaysia,
extension services should train smallholders in digital
farming tools, while in China, rural education programs
could promote adoption on a national scale (Lau et al.
2023). Empowering farmers with knowledge and access
to these technologies will be key to improving crop
resilience and yield outcomes.

Key findings and insights

A review of recent studies highlights both progress and
challenges in crop stress detection efforts in Malaysia and
China. In both countries, remote sensing tools particularly
satellite imagery, UAVs, and multispectral imaging have
shown strong potential in detecting stress caused by
nutrient deficiencies, water shortages and diseases. In
China, advanced Al models like Convolutional Neural
Networks (CNN), Vision Transformers (ViT), and
attention-based architectures have significantly improved
classification accuracy and enabled earlier detection,
supporting large-scale precision agriculture systems
(Zhang et al. 2024 and Zhao et al. 2023).

In comparison, Malaysia’s research efforts remain at
an earlier stage. While there is growing interest, studies
have primarily focused on combining multispectral and
thermal UAV data with machine learning methods such
as Random Forest and Support Vector Machines (SVM),
especially in crops like oil palm and paddy (Anuar et
al. 2022 and Baharim et al. 2023). These approaches
have successfully identified early signs of water and
nutrient stress, though implementation is largely limited
to research settings rather than field-scale applications.

A key trend in both countries is the use of multisource
data fusion. Integrating UAV imagery with satellite
and ground sensor data has led to more robust models
and improved spatial and temporal resolution, helping
overcome limitations of individual data sources like
cloud cover or low resolution (Li et al. 2024 and Chong
et al. 2017). Incorporating weather and soil data into Al-
driven decision support systems has further improved the
precision of stress detection and enabled more site-specific
recommendations.

Importantly, localised model development has emerged
as a critical factor. AI models trained on region-specific
datasets tend to outperform generic ones, especially in
tropical environments like Malaysia. In China, there is
increasing focus on building tailored models based on
crop types and agroecological zones, a strategy that could
significantly enhance accuracy and usability in Malaysia’s
diverse farming contexts (Wang et al. 2016).

Despite technical advancements, practical challenges
remain, particularly in Malaysia. High costs of data
collection, limited infrastructure, and a lack of farmer
training continue to hinder adoption. In contrast, China’s
progress has been supported by government-backed
initiatives and scaled-up implementations, highlighting the
importance of policy support and funding for technology
uptake (Lau et al. 2023).

Limitations and challenges

Despite promising outcomes, several key limitations
persist. The performance of Al-based crop stress detection
is highly dependent on the availability of high-quality
ground-truth data, which remains fragmented or outdated
in many developing regions. UAVs provide detailed
imagery but are constrained by limited spatial coverage,
reducing their utility for large-scale monitoring unless
used in tandem with other platforms. Furthermore, models
trained in one crop or region often lack generalisability
due to differences in environmental and phenotypic
conditions, requiring frequent retraining. A lack of
standardised protocols for stress classification also poses
challenges for model reproducibility and inter-study
comparisons.

Conclusion and recommendations

This review has examined recent developments in Al-
integrated remote sensing for crop stress detection,
focusing on Malaysia and China. China has demonstrated
significant advancement through the use of deep learning
models like CNNs, Vision Transformers, and attention
mechanisms, supported by large datasets and strong
government initiatives. These systems have enabled early
and accurate detection of stress across broad agricultural
landscapes.

In Malaysia, progress is emerging, though largely
confined to experimental plots. Applications of
multispectral drone imagery combined with classical
machine learning algorithms such as SVM and Random
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Forest have shown encouraging results, particularly for
oil palm and paddy. However, broader implementation
remains limited by a lack of localised datasets,
infrastructure, and policy support.

Future work should prioritise the development of
localised and crop-specific models, integration of diverse
data sources, and multi-stakeholder collaboration.
Promoting affordable sensing technologies and improving
farmer training will be essential for scaling adoption.
While the technological foundation is well-established
especially in China realising its full potential in Malaysia
will require targeted investment in capacity building,
infrastructure and policy frameworks. Addressing these
gaps will be critical for advancing digital agriculture and
enhancing resilience in food production systems.
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