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Abstract

This review explores how remote sensing and artificial intelligence (AI) are being used to detect crop stress, focusing 
on recent research from Malaysia and China. The findings show that China is leading the way, with widespread use 
of advanced AI models like convolutional neural networks (CNNs), Vision Transformers (ViTs), and attention-based 
systems. These models are supported by large datasets and strong government backing, making it possible to detect 
crop stress early and accurately across large areas. Malaysia, on the other hand, is still in the early stages. Most studies 
are limited to small-scale trials using drone imagery and more traditional machine learning models such as Support 
Vector Machines (SVM) and Random Forest (RF). Despite these limitations, the results have been promising, especially 
for key crops like oil palm and rice. However, Malaysia faces challenges including a lack of localised data, limited 
AI infrastructure, and minimal policy support. To move forward, future efforts should focus on developing locally 
relevant models, using multiple types of data together, and fostering collaboration between researchers, policymakers 
and farmers. There’s also a need to make sensing technologies more affordable and accessible to those working on 
the ground. In summary, while China has already laid a strong foundation for AI-powered crop stress detection, 
Malaysia has the potential to catch up provided that there is strategic investment in research, infrastructure and farmer 
engagement. With the right support, both countries can strengthen their agricultural resilience and better prepare for 
climate-related challenges.
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Introduction 

Crop stress, driven by environmental, biological, or 
nutritional factors, remains a major cause of yield loss 
in agriculture worldwide. As global food demand rises 
and climate variability intensifies, timely and accurate 
detection of crop stress has become increasingly critical. 
Traditional field-based stress assessment methods are 
labour-intensive, time-consuming, and spatially limited, 
making them impractical for large-scale monitoring 
(Ihuoma & Madramootoo, 2017).
	 Remote sensing, using satellite or drone imagery, 
enables continuous monitoring by capturing key data 
such as vegetation reflectance, thermal signatures, and 
canopy structure. Vegetation indices like the Normalised 

Difference Vegetation Index (NDVI), Enhanced 
Vegetation Index (EVI) and Normalised Difference Water 
Index (NDWI) are commonly employed to assess plant 
health, water stress and biomass (de la Iglesia Martinez 
& Labib, 2023). 
	 Recent advancements in sensor technology and 
increased temporal data availability through platforms 
like Sentinel-2 (S-2), Landsat 8 (L-8), and Unmanned 
Aerial Vehicles (UAVs) provide high-resolution data 
that enhances crop stress monitoring. The integration of 
Artificial Intelligence (AI), including Machine Learning 
(ML) and Deep Learning (DL), further improves data 
analysis and decision-making in precision agriculture. 
models, allows for better interpretation of remote sensing 
data. 
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	 These AI models are adept at detecting subtle stress 
patterns and classifying stress types, often outperforming 
traditional threshold-based methods (Janga et al. 2023). 
Algorithms such as Random Forest, Support Vector 
Machines, and Decision Trees are effective for classifying 
crop stress based on diverse data sources.
	 Furthermore, advanced models like Convolutional 
Neural Networks (CNN) and Long Short-Term Memory 
(LSTM) networks have gained popularity for their ability 
to capture both spatial and temporal dependencies in 
the data (Lindemann et al. 2021). By combining remote 
sensing with AI, these methods enhance stress detection 
accuracy and support real-time decision-making in 
precision agriculture.
	 Despite growing research, comparative analyses of 
these techniques across different agroecological zones 
remain limited. China and Malaysia offer contrasting 
agricultural environments: China’s temperate regions 
feature intensive cropping systems, while Malaysia’s 
tropical climate supports year-round cultivation. 
Evaluating how remote sensing and AI-based methods 
perform in detecting crop stress in these regions is crucial 
for developing adaptable, transferable models.
	 This review aims to address this gap by examining the 
application of remote sensing and AI in detecting crop 
stress in China and Malaysia. It will assess the data sources, 
algorithmic approaches, and classification methods used 
in recent studies, evaluate their effectiveness, and identify 
key challenges and future directions. The review seeks to 
contribute to the development of accessible, intelligent 
monitoring tools to enhance agricultural resilience amidst 
growing climatic and environmental challenges.

Literature review

Remote sensing techniques for crop stress detection

Remote sensing (RS) has emerged as a pivotal technology 
for monitoring crop stress, offering non-destructive, real-
time, and large-scale observation capabilities. Satellite 
platforms, including Sentinel-2 (S-2), Landsat 8 (L-8), 
and the Moderate Resolution Imaging Spectroradiometer 
(MODIS), are commonly used for their ability to capture 
continuous spectral data across broad geographic areas. 
These sensors measure reflectance in Visible (VIS), Near-
Infrared (NIR), and Shortwave Infrared (SWIR) bands, 
which can be used to derive vegetation indices such as 
the Normalized Difference Vegetation Index (NDVI), 
Enhanced Vegetation Index (EVI), and Normalized 
Difference Water Index (NDWI). These indices are highly 
correlated with various plant health indicators, including 
vigor, chlorophyll content, and water status (Ma et al. 
2019). For instance, Zhang et al. (2023) found that NDWI 
was more effective than NDVI in detecting early drought 
stress in maize fields in eastern China. Alongside satellite-
based platforms, unmanned aerial vehicles (UAVs) 
equipped with multispectral and thermal cameras have 
gained popularity for high-resolution, field-level stress 
detection. UAVs provide precise spatial details, making 

them invaluable for detailed crop stress analysis. In 
Malaysia, UAVs have been successfully used to monitor 
nutrient deficiencies and disease stress in oil palm and 
rice fields, achieving sub-meter accuracy in detecting 
symptoms such as chlorosis and canopy degradation 
(Rendana et al. 2015). However, operational challenges 
related to UAVs include their limited flight range and 
dependence on favourable weather conditions.

Artificial intelligence algorithms in stress 
classification

The integration of artificial intelligence (AI) algorithms has 
significantly transformed the analysis and interpretation 
of remote sensing data. Traditional machine learning 
(ML) models such as Random Forest (RF), Support 
Vector Machines (SVM), and Gradient Boosting (GB) 
have been extensively used for crop stress classification 
tasks. These models excel at handling multivariate 
input from different sensors and are often effective with 
moderate-sized labelled datasets (Haider et al. 2024). For 
example, RF was applied in northern China to classify 
wheat fields under varying drought stress levels, achieving 
an impressive classification accuracy of 88% using 
multispectral imagery and soil moisture data.
	 Deep learning (DL) models, particularly Convolutional 
Neural Networks (CNNs), offer enhanced performance by 
automatically extracting spatial and spectral features from 
imagery data, which improves stress detection accuracy. 
Long Short-Term Memory (LSTM) models, on the other 
hand, are used to capture temporal dynamics, which are 
crucial for monitoring stress progression throughout the 
growing season (Paul et al. 2025). 
	 In Malaysia, Convolutional Neural Networks (CNN) 
trained on UAV imagery achieved 94% accuracy in 
distinguishing between fungal disease and nutrient stress 
in rice fields (El Sakka et al. 2025). However, deep 
learning methods are computationally intensive and 
require large, labelled datasets, which may limit their 
applicability in regions with fewer resources.

Comparative studies and regional applications

While there has been progress in using AI and remote 
sensing technologies for crop stress detection, comparative 
studies across different regions are still limited. In China, 
significant strides have been made in satellite data 
assimilation and operational crop monitoring. Meanwhile, 
Malaysia has leaned more toward UAV-based approaches, 
driven by smaller field sizes and persistent cloud cover in 
the region. The varying agroecological conditions, such as 
soil type, crop variety, and climate, significantly impact 
the performance of AI models, highlighting the need for 
localised calibration (Bracho-Mujica et al. 2023).
	 The gap between regional applications, transfer learning 
and domain adaptation have been proposed as potential 
solutions. For instance, a CNN model trained on maize 
data from China was successfully adapted to Malaysian 
corn fields with minimal retraining, demonstrating the 
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feasibility of cross-country stress detection models when 
appropriate adjustments are made (Zou et al. 2024). 
	 Despite these promising results, challenges remain in 
ensuring standardised ground truth data collection and 
achieving interoperability between different sensors and 
platforms. These issues need to be addressed to improve 
the effectiveness and applicability of remote sensing and 
AI-based stress detection systems globally.

Materials and method

This review systematically synthesises recent advances 
in remote sensing and artificial intelligence (AI) for 
crop stress detection, with a particular focus on studies 
conducted in China and Malaysia. The methodology 
included structured literature searches, classification 
of technological approaches, and comparative regional 
analysis to capture current trends and applications. 

Literature collection and selection

A total of 785 documents were initially retrieved through 
a comprehensive search conducted across five major 
scientific databases such as Scopus, Web of Science, IEEE 
Xplore, ScienceDirect, and Google Scholar, spanning the 
period from January 2014 to March 2024. The search 
strategy incorporated combinations of keywords related 
to remote sensing, artificial intelligence, and crop stress, 
linked using Boolean operators such as AND, OR, and 
NOT. For example, search strings included: “remote 
sensing” AND “crop stress”, “UAV” OR “satellite 
imagery” AND “AI”, and “machine learning” AND “plant 
stress” AND (Malaysia OR China). The retrieved literature 
comprised peer-reviewed journal articles, conference 
proceedings, and technical reports.
	 Ensuring relevance and quality, a two-stage screening 
process was implemented. The first stage involved 
title and abstract screening to eliminate duplicates 
and irrelevant studies, narrowing the selection to 312 
records. The second stage involved a full-text review, 
applying specific inclusion criteria: (i) use of remote 
sensing platforms such as Unmanned Aerial Vehicles 
(UAVs), Sentinel-2, or Landsat 8; (ii) application of AI 
or machine learning techniques including Support Vector 
Machines (SVM), Random Forest (RF), Convolutional 
Neural Networks (CNN), and Long Short-Term Memory 
(LSTM); and (iii) empirical field trials or experiments 
conducted in Malaysia or China. Ultimately, 40 studies 
were included in the final review. The entire selection 
process is visually summarised in Figure 1 to enhance 
transparency and reproducibility.

Data extraction and review parameters

Each study was analysed for crop stress types (e.g., water 
stress, nutrient deficiency, pest/disease, salinity), remote 
sensing platforms (satellites like Sentinel-2, Landsat 8; 
UAVs; ground-based sensors), and vegetation indices such 
as NDVI, NDRE, CWSI, and PRI. AI techniques including 
Random Forest (RF), Support Vector Machines (SVM), 
Convolutional Neural Networks (CNN), and Long Short-
Term Memory (LSTM) models were documented, with 
performance evaluated using metrics such as classification 
accuracy, F1-score, RMSE, and AUC (Adugna et al. 
2022). The dataset was then categorised by stress type, 
sensor, AI method, and region for cross-comparison 
(Martinez-Rios et al. 2021).

Regional contextualisation

Regional agricultural contexts were factored into the 
analysis. In China, large, mechanised farms often use 
satellite-based remote sensing for large-scale stress 
detection, while Malaysia’s smallholder farms and tropical 
conditions (e.g. cloud cover, high rainfall) favour UAV-
based solutions (Nahiyoon et al. 2024). Agroclimatic 
data from national meteorological agencies added 
environmental context to interpret crop stress variability 
across both regions.

Limitations of the reviews 

This review is confined to stress detection during active 
crop growth and excludes studies on yield prediction or 
genomic research. English-language publications were 

Figure 1. A flowchart to visually represent entire systematic 
literature review
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prioritised, potentially excluding region-specific studies 
in other languages. Despite this, the review presents a 
useful representation of advancements in remote sensing 
and AI for crop stress monitoring in the two countries.

Results and discussion

Remote sensing combined with AI has transformed crop 
stress detection, offering precise, real-time assessments of 
drought, nutrient imbalance, disease, and salinity impacts. 
The reviewed studies from China and Malaysia reveal a 
consistent increase in the use of both satellite and UAV 
platforms integrated with AI algorithms for improved 
stress monitoring.
	 Figure 2 highlights the growth in studies using AI and 
imaging sensors from 2014 to 2024. Initial research was 
limited (3 studies in 2014, 6 in 2015), with notable growth 
from 2017 onwards. The field expanded significantly in 
2019 (26 studies) and surged in 2020 (65) and 2021 (61), 
likely due to improved AI tools and heightened demand 
for high-throughput agricultural monitoring. This trend 
continued post-pandemic, peaking at 76 studies in 2024. 
The data underscore increasing reliance on AI and imaging 
technologies to address climate-driven stress factors and 
precision agriculture needs.
	 Figure 3 summarises the total number of studies 
retrieved from four major scientific databases Springer 
(SPR), ScienceDirect (SD), PubMed (PM), and Web 
of Science (WOS)before and after screening using the 
Automated Systematic Review (ASReview) tool. The 
figure provides insight into the efficiency of the screening 
process in identifying relevant studies for inclusion in the 
review. Initially, 974 articles were retrieved from SPR, 
out of which 434 were deemed relevant after ASReview 
screening, while 540 were categorised as irrelevant.

	 Similarly, SD yielded 122 articles, with 68 retained and 
54 excluded. PM returned the highest number of initial 
records, with 1,114 studies retrieved; after screening, 
567 were identified as relevant and 547 as irrelevant. 
Lastly, WOS contributed 494 articles, of which 321 were 
considered relevant and 173 were excluded. These results 
reflect the high volume of literature available in this 
field and underscore the importance of using systematic 
and semi-automated screening tools like ASReview to 
efficiently manage and curate large datasets during the 
review process.

Crop stress detection in China: Satellite and AI 
integration

Table 1 provides a comprehensive comparison of studies 
conducted in China that utilised Satellite Imagery 
(SI) for Crop Stress Detection and Classification 
(CSDC), highlighting the diversity of satellite sensors, 
methodologies, and accuracy metrics involved. Jiang 
et al. (2020) employed Sentinel-2 (S2) multispectral 
data for large-scale crop mapping, achieving an overall 
accuracy (OA) of 94%, demonstrating the effectiveness 
of high-resolution multispectral imagery in agricultural 
monitoring. Similarly, Liu et al. (2023) enhanced 
temporal information by leveraging time-series S2 
images to produce a cropping intensity map at 10 m 
resolution, attaining an even higher OA of 96.68% and 
Kappa Coefficient (KC) of 0.90, indicating strong model 
reliability.
	 In contrast, Zhai et al. (2020) utilised an improved 
Linear Isometric Mapping (L–ISOMAP) dimensionality 
reduction approach combined with Random Forest (RF) 
on Landsat 8 (L8) imagery to automatically classify crops 
in Northeast China. While slightly lower, their reported 
OA of 83.68% is still acceptable, given the methodological 
complexity and spatial scale.

Figure 2. Overview of the total number of studies published by year using AI and imaging sensors 
to investigate plant stress responses. 
Source: Walsh et al. 2024
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Table 1. Comparison of crop stress detection accuracy in China using satellite imagery

Study Satellite sensor Method / Model Accuracy metrics Reference
Large-Scale and High-Resolution 
Crop Mapping in China Sentinel-2 Multispectral image 

classification Overall accuracy: 94% Jiang et al. 
2020

Cropping Intensity Map of China 
(10 m resolution) Sentinel-2 Time-series analysis Overall accuracy: 96.68%; 

Kappa: 0.90 Liu et al. 2023

Automatic Crop Classification in 
NE China Landsat 8 Improved L–ISOMAP + 

Random Forest Overall accuracy: 83.68% Zhai et al. 2020

CIrrMap250: Annual Irrigated 
Cropland Maps

MODIS & 
Landsat

Multi-source fusion and 
annual mapping

Accuracy compared with 
existing datasets (value not 
explicitly stated)

Zhang et al. 
2020

Crop Mapping with Combined Use 
of European and Chinese Satellite 
Data

Sentinel-2 & 
GF-1

Adapted ESA approach; 
classification algorithms Overall accuracy: 94–97% Fan et al. 2021

Improving the Accuracy of 
Satellite-Based High-Resolution 
Yield Estimation

Sentinel-2 & 
ZY-1 02D LSTM, RF, GBDT, SVR LSTM RMSE: 0.201 t/ha; 

RF RMSE: 0.260 t/ha Jin et al. 2017

Evaluation of Crop Type 
Classification with Different High 
Resolution Satellite Data Sources

GF-1, 
Sentinel-2, 
Landsat 8

Random Forest
GF-1: 93–94%; Sentinel-2: 
96–98%; Landsat 8: 
97–98%

Fan et al. 2021

A Refined Crop Drought 
Monitoring Method Based on the 
Chinese GF-1 Wide Field View 
Data

GF-1 WFV EVI2-based MPDI Accuracy above 95% Chang et al. 
2018

Comparative Analysis of Chinese 
High-Resolution Satellite Data for 
Sugarcane Classification Based on 
U-Net Model

GF-1 & GF-2 U-Net deep learning model
GF-2 outperformed 
GF-1 in OA and Kappa 
coefficient

Chen et al. 
2022

Categorisation by Leveraging 
CNNs and Remote Sensing 
Satellite Imagery for Crop Analysis 
in Arid Environments

Landsat-8 CNN architectures 
(ResNet, EfficientNetV2)

ResNet and EfficientNetV2 
achieved highest 
classification accuracy

Malhan et al. 
2024

Figure 3. Summary of the total number of studies retrieved by SLR, which targeted AI and imaging 
sensors investigating plant stress. 
Source: Walsh et al. 2024
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	 A broader mapping effort was presented by Zhang 
et al. (2024) through the Cropland Irrigation Map 250 
(CIrrMap250) dataset, which integrates data from 
Moderate Resolution Imaging Spectroradiometer 
(MODIS) and L8 for annual irrigated cropland monitoring. 
Although specific accuracy values were not reported, 
the approach emphasised multi-source data fusion, 
underscoring the importance of combining medium- and 
high-resolution datasets for enhanced spatial–temporal 
analysis.
	 Fan et al. (2021) explored two aspects: first, they 
compared S2 and China’s Gaofen-1 (GF-1) satellite data 
in crop classification, applying an adapted European Space 
Agency (ESA) methodology and achieving a notable 94 
– 97% OA, showcasing the effectiveness of combining 
European and Chinese satellite technologies. Second, 
they evaluated classification performance across different 
satellites using an RF classifier, reporting GF-1 (93 – 
94%), S2 (96 –  98%), and L8 (97 – 98%), reinforcing 
the superior accuracy of high-resolution platforms.
	 Jin et al. (2017) evaluated yield estimation performance 
using S2 and Ziyuan-1 02D (ZY-1 02D) satellites and 
multiple machine learning models. The Long Short-
Term Memory (LSTM) model produced the best result 
with a Root Mean Square Error (RMSE) of 0.201 t/
ha, outperforming RF, Gradient Boosted Decision 
Trees (GBDT), and Support Vector Regression (SVR), 
emphasising the value of deep learning in capturing yield 
variability. In terms of drought detection, Chang et al. 
(2018) used GF-1 Wide Field View (GF-1 WFV) data 
with a refined Enhanced Vegetation Index 2 (EVI2)-based 
Modified Perpendicular Drought Index (MPDI), reporting 
over 95% accuracy in monitoring drought stress, proving 
the potential of vegetation indices in detecting abiotic 
stress conditions.
	 A more focused crop-specific analysis by Chen et al. 
(2022) involved sugarcane classification using GF-1 and 
Gaofen-2 (GF-2) images, implementing a U-Net deep 
learning model. The results showed that GF-2 imagery 
yielded better classification outcomes in terms of OA and 
KC, highlighting the role of spatial resolution in deep 
learning-based segmentation tasks.
	 Finally, Malhan et al. (2024) applied Convolutional 
Neural Networks (CNNs) such as Residual Network 
(ResNet) and EfficientNetV2 on L8 for crop stress 
analysis in arid environments. Both CNN models 
delivered the highest classification accuracies among 
tested architectures, reaffirming the emerging importance 
of advanced deep learning models in crop monitoring.
	 This comparative analysis underscores the diversity 
of approaches in crop stress detection research 
across China. High-resolution satellite platforms 
such as Sentinel-2 (S2), Gaofen-2 (GF-2), and 
Landsat-8 (L8) consistently deliver strong classification 
results, particularly when paired with Machine 
Learning (ML) and Deep Learning (DL) techniques. 
Moreover, the fusion of multi-source data and temporal 
information further improves accuracy, as observed 
in studies leveraging time-series or multi-sensor 

approaches. These findings support continued investment 
in high-resolution Earth Observation (EO) systems and 
algorithmic innovation to enhance agricultural monitoring 
and decision-making under changing climate conditions.
	 Table 2 presents a comparative overview of various 
Artificial Intelligence (AI) models applied in the 
detection and classification of crop stress across different 
agricultural contexts in China. These studies highlight the 
integration of ML and DL algorithms with diverse imaging 
sources such as satellites, drones, and Red-Green-Blue 
(RGB) sensors. A range of crop types such as cotton, rice, 
wheat, maize, potato and multiple mixed crops—were 
targeted using a combination of Convolutional Neural 
Networks (CNNs), Recurrent Neural Networks (RNNs), 
and transformer-based architectures.
	 For example, the detection of cotton water stress 
employed DL models like Visual Geometry Group 
16 (VGG16), Residual Network 18 (ResNet-18), and 
MobileNetV3 (MNv3), using thermal imagery to identify 
physiological stress signatures associated with water 
deficits (AZO AI News, 2024). Similarly, time-series 
data from Sentinel-1A Synthetic Aperture Radar (SAR) 
was processed using sequential models like Long Short-
Term Memory (LSTM) and Gated Recurrent Unit (GRU) 
to support early classification of multiple crop types, 
demonstrating the effectiveness of temporal data in 
monitoring early phenological changes (Zou et al. 2019).
	 In the case of rice and potato crops, more specialised 
models such as the Attention-Based Depthwise Separable 
Neural Network with Bayesian Optimisation (ADSNN-
BO) and Retina-UNet-Ag were employed to detect 
disease and stress symptoms using close-range leaf or 
aerial imagery (Chen et al. 2022 and Khan et al. 2021). 
These models were tailored to handle the complexity of 
fine-grained image features, allowing for more precise 
detection. Likewise, the Vision Transformer (ViT) and 
EfficientNetB0 (ENB0) architectures were successfully 
used with RGB images to identify nitrogen stress in maize, 
reflecting the growing trend of applying transformer 
models in agricultural computer vision tasks (Li et al. 
2024).
	 While satellite-based systems such as those using 
S2, GF-2, and L8 offer the advantage of wide spatial 
coverage and frequent monitoring at relatively lower 
costs, they are not without challenges. Limitations such 
as cloud interference, relatively low spatial resolution, and 
temporal gaps between satellite passes may restrict their 
effectiveness in capturing rapid or highly localised stress 
events. In contrast, drone-based and proximal sensing 
technologies offer higher resolution data but are often 
constrained by scalability and operational complexity.
	 Overall, the table emphasises the growing diversity of 
AI approaches tailored for specific imaging modalities and 
crop stress scenarios in China. It underscores the need 
for a balanced consideration of resolution, coverage, cost, 
and model complexity when designing AI-powered crop 
stress detection systems for precision agriculture.
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	 The advantages of satellite-based systems are clear, 
offering the ability to monitor vast areas with relatively 
low operational costs. However, satellite systems also face 
limitations such as cloud cover, coarse spatial resolution, 
and longer revisit times, which may hinder their ability 
to detect sudden or localised stress events in crops.

Crop stress detection in Malaysia using remote 
sensing and AI

In Malaysia, the adoption of UAV-based remote sensing 
technologies is more prevalent than satellite systems due 
to smaller farm sizes and persistent cloud cover in the 
tropical climate. These conditions limit the usability of 
satellite imagery, making UAVs a practical alternative for 
timely crop monitoring. For instance, Rahman et al. (2023) 
used UAV-mounted multispectral sensors combined with 
SVM (Support Vector Machines) to detect water stress 
and pest damage in oil palm plantations, achieving 95% 
classification accuracy.
	 Recent studies have applied various remote sensing 
platforms and AI algorithms to detect a range of crop 
stresses. Chong et al. (2017) demonstrated that spectral 
reflectance analysis could effectively identify nutrient 
deficiencies across different crops using vegetation 
indices. Rudiyanto et al. (2023) integrated SVM models 
with Sentinel-1 SAR (Synthetic Aperture Radar) imagery 
to track rice growth stages, highlighting the potential of 
satellite radar data for crop stress monitoring.

	 In oil palm plantations, Baharim et al. (2023) applied 
SVM and RF (Random Forest) classifiers to detect 
Ganoderma basal stem rot using UAV multispectral 
imagery, emphasizing the role of early disease diagnosis. 
Similarly, Lau et al. (2023) used deep learning models 
such as YOLOv4 and YOLOv4-Tiny to detect stress 
symptoms in chili and eggplant, showing the practicality 
of UAV-based monitoring in small and medium-scale 
farming.
	 Zainuddin et al. (2023) utilised CNN (Convolutional 
Neural Networks) with RGB images to identify diseases 
like rust and blight in maize. Anuar et al. (2022) compared 
the performance of CNN, KNN (K-Nearest Neighbors), 
and SVM models for detecting stress in various crops 
using RGB imagery, underscoring the adaptability of AI 
in agricultural diagnostics.
	 Nazsoft Tech (2024) further demonstrated the 
integration of deep learning in real-time agricultural 
monitoring by employing GoogLeNet and ResNet-101 
models to detect nutrient deficiencies and diseases using 
camera-based imaging. Together, these studies reflect 
Malaysia’s growing emphasis on leveraging remote 
sensing and AI technologies for precise, early detection of 
crop stress, which is essential for sustainable agricultural 
practices.

Table 2. AI model comparison for crop stress detection in China

Study AI model(s) Satellite/Imaging 
source

Target crop/
Stress type

Reference

Deep learning for cotton 
water stress detection

VGG16, ResNet-18, MobilenetV3, 
DenseNet-201, CSPdarknet53

Thermal imagery Cotton water 
stress

AZO AI News, 
2024

Early crop classification 
using sentinel-1A

1D CNN, LSTM RNN, GRU RNN Sentinel-1A SAR 
time series

Multiple crops Zou et al. 2019

Crop monitoring with pre-
trained CNNs

DenseNet121, ResNet50 Satellite imagery Various crops Yang et al. 
2024

CropQuant-Air for wheat 
trait analysis

YOLOv7, XGBoost Drone imagery Wheat Zhao et al.  
2023

Rice disease detection 
with ADSNN-BO

Attention-based depthwise separable 
neural network with Bayesian 
optimisation

Rice leaf images Rice diseases Chen et al. 
2022

Potato crop stress 
identification

Retina-UNet-Ag Aerial images Potato crop 
stress

Khan et al. 
2021

Nitrogen stress detection 
in maize

Vision Transformer (ViT), 
EfficientNetB0

RGB images Maize nitrogen 
stress

Li et al. 2024
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Challenges and future directions in crop stress 
detection using remote sensing and AI in Malaysia 
and China

One of the key limitations in crop stress detection in 
both Malaysia and China is the quality and consistency 
of remote sensing data. In Malaysia, persistent tropical 
cloud cover disrupts optical satellite imaging, reducing 
its effectiveness for timely crop monitoring (Zhao et 
al. 2023). In contrast, China’s more advanced satellite 
infrastructure is constrained by inconsistent coverage and 
insufficient spatial resolution in certain regions, making it 
difficult to detect localised stress conditions (Zhang et al. 
2024). Furthermore, current temporal resolutions often fail 
to capture rapid changes in crop health, which are critical 
for timely management interventions (Li et al. 2024).
	 Data integration presents another major challenge, 
particularly in fusing data from satellites, unmanned aerial 
vehicles (UAVs), and ground-based sensors. Variations 
in spatial and temporal resolution across these platforms 
complicate data fusion efforts. In Malaysia, where 
smallholder farms dominate, linking remote sensing 
outputs with ground-based agronomic measurements, 
such as soil moisture and canopy temperature, remains 
limited (Chong et al. 2017). In China, ongoing efforts 
to integrate synthetic aperture radar (SAR) and optical 
satellite data are still under development, restricting the 
precision of monitoring systems (Zhang et al. 2024).
	 The deployment of artificial intelligence (AI) models, 
such as convolutional neural networks (CNNs) and You 
Only Look Once (YOLO), faces additional barriers. These 
models require significant computational resources and 
large, high-quality annotated datasets, which are often 
scarce in tropical agricultural systems. In particular, 
datasets targeting specific stressors, such as nutrient 
deficiencies or crop diseases, are limited, increasing the 
risk of overfitting and reducing the models’ adaptability 
across diverse agroecosystems (Anuar et al. 2022).

	 A further constraint is the limited availability of 
ground-truth data for model calibration and validation. 
In Malaysia, small-scale farms typically lack sensor 
infrastructure for systematic field data collection (Chong 
et al. 2017). In China, the sheer scale and variability of 
agricultural landscapes make consistent in-field validation 
resource-intensive, thus limiting the scalability of AI-
driven monitoring platforms.
	 Finally, cost and scalability remain significant 
obstacles. In Malaysia, smallholder farmers often 
cannot afford UAVs, high-resolution satellite imagery, 
or AI-based analysis platforms (Lau et al. 2023). Even 
in China, despite stronger technological infrastructure, 
the operational costs of large-scale, high-frequency 
monitoring limit accessibility for smaller producers (Li 
et al. 2024). Overcoming these economic and technical 
barriers is essential to enable broader adoption and 
improve the effectiveness of remote sensing and AI-based 
crop stress detection systems.

Future direction and suggestion

Addressing current limitations will require advances in 
remote sensing technologies. Emerging low-cost, high-
resolution satellites and UAVs, including those equipped 
with Synthetic Aperture Radar (SAR) and microwave 
sensors, can overcome issues like cloud cover and low 
spatial resolution, improving the reliability of crop stress 
monitoring in Malaysia and China (Zhao et al. 2023). 
These tools promise better temporal and spatial coverage 
for more accurate and timely assessments.
	 A major direction is the integration of multisource 
data from satellites, drones, and ground sensors combined 
with agronomic inputs such as soil moisture and weather 
conditions. AI-powered data fusion will be vital for 
merging these diverse datasets and delivering real-time 
insights to farmers (Anuar et al. 2022). Yet, developing 
robust algorithms for this purpose remains a key research 
priority.

Table 3. Recent studies on crop stress detection and AI applications in Malaysia using remote sensing

Crop type Stress type/Application AI methodology Remote sensing platform Reference
Various 
crops

Nutrient stress Spectral reflectance analysis Remote sensing Chong et al. 2017

Rice Growth stages (stress 
indicator)

Support Vector Machine 
(SVM)

Sentinel-1 SAR Rudiyanto et al. 
2023

Oil palm Ganoderma basal stem rot ML classifiers (SVM, RF) UAV multispectral 
imagery

Baharim et al. 
2023

Chili, 
Eggplant

General stress proxy YOLOv4, YOLOv4-Tiny UAV imagery Lau et al. 2023

Maize Common rust and blight 
diseases

CNN RGB imaging Zainuddin et al. 
2023

Various 
crops

General plant disease (stress 
proxy)

CNN, KNN, SVM RGB imaging Anuar et al. 2022

Various 
crops

Nutrient deficiency, disease GoogLeNet, ResNet-101 Camera-based imaging Nazsoft Tech, 2024
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	 Optimising AI models to reduce computational 
demands is also critical. Efforts are underway to make 
models lighter and compatible with smartphones or edge 
devices, improving access for smallholders in Malaysia 
and enabling broader scalability in China’s large-scale 
farms (Lau et al. 2023).
	 The development of real-time decision support systems 
(DSS) using remote sensing and AI could also transform 
crop management. In Malaysia, such systems could 
support timely irrigation decisions, while in China, early 
detection of disease outbreaks could help minimize crop 
losses (Chen et al. 2020). Integrating DSS into existing 
farming practices would enhance both sustainability and 
productivity.
	 Collaborative, open-source platforms could accelerate 
progress by encouraging data and model sharing among 
researchers and farmers. This approach would support 
continuous refinement and wider adoption of stress 
detection systems in both countries (Zhang et al. 2024).
	 Localised, region-specific models offer another 
promising avenue. By accounting for unique soil and 
climate conditions, these models can deliver more targeted 
stress management. Such personalisation is especially 
relevant for Malaysia’s small farms and China’s diverse 
agricultural zones (Chong et al. 2017).
	 Finally, capacity building is essential. In Malaysia, 
extension services should train smallholders in digital 
farming tools, while in China, rural education programs 
could promote adoption on a national scale (Lau et al. 
2023). Empowering farmers with knowledge and access 
to these technologies will be key to improving crop 
resilience and yield outcomes.

Key findings and insights

A review of recent studies highlights both progress and 
challenges in crop stress detection efforts in Malaysia and 
China. In both countries, remote sensing tools particularly 
satellite imagery, UAVs, and multispectral imaging have 
shown strong potential in detecting stress caused by 
nutrient deficiencies, water shortages and diseases. In 
China, advanced AI models like Convolutional Neural 
Networks (CNN), Vision Transformers (ViT), and 
attention-based architectures have significantly improved 
classification accuracy and enabled earlier detection, 
supporting large-scale precision agriculture systems 
(Zhang et al. 2024 and Zhao et al. 2023).
	 In comparison, Malaysia’s research efforts remain at 
an earlier stage. While there is growing interest, studies 
have primarily focused on combining multispectral and 
thermal UAV data with machine learning methods such 
as Random Forest and Support Vector Machines (SVM), 
especially in crops like oil palm and paddy (Anuar et 
al. 2022 and Baharim et al. 2023). These approaches 
have successfully identified early signs of water and 
nutrient stress, though implementation is largely limited 
to research settings rather than field-scale applications.

	 A key trend in both countries is the use of multisource 
data fusion. Integrating UAV imagery with satellite 
and ground sensor data has led to more robust models 
and improved spatial and temporal resolution, helping 
overcome limitations of individual data sources like 
cloud cover or low resolution (Li et al. 2024 and Chong 
et al. 2017). Incorporating weather and soil data into AI-
driven decision support systems has further improved the 
precision of stress detection and enabled more site-specific 
recommendations.
	 Importantly, localised model development has emerged 
as a critical factor. AI models trained on region-specific 
datasets tend to outperform generic ones, especially in 
tropical environments like Malaysia. In China, there is 
increasing focus on building tailored models based on 
crop types and agroecological zones, a strategy that could 
significantly enhance accuracy and usability in Malaysia’s 
diverse farming contexts (Wang et al. 2016).
	 Despite technical advancements, practical challenges 
remain, particularly in Malaysia. High costs of data 
collection, limited infrastructure, and a lack of farmer 
training continue to hinder adoption. In contrast, China’s 
progress has been supported by government-backed 
initiatives and scaled-up implementations, highlighting the 
importance of policy support and funding for technology 
uptake (Lau et al. 2023).

Limitations and challenges

Despite promising outcomes, several key limitations 
persist. The performance of AI-based crop stress detection 
is highly dependent on the availability of high-quality 
ground-truth data, which remains fragmented or outdated 
in many developing regions. UAVs provide detailed 
imagery but are constrained by limited spatial coverage, 
reducing their utility for large-scale monitoring unless 
used in tandem with other platforms. Furthermore, models 
trained in one crop or region often lack generalisability 
due to differences in environmental and phenotypic 
conditions, requiring frequent retraining. A lack of 
standardised protocols for stress classification also poses 
challenges for model reproducibility and inter-study 
comparisons.

Conclusion and recommendations

This review has examined recent developments in AI-
integrated remote sensing for crop stress detection, 
focusing on Malaysia and China. China has demonstrated 
significant advancement through the use of deep learning 
models like CNNs, Vision Transformers, and attention 
mechanisms, supported by large datasets and strong 
government initiatives. These systems have enabled early 
and accurate detection of stress across broad agricultural 
landscapes.
	 In Malaysia, progress is emerging, though largely 
confined to experimental plots. Applications of 
multispectral drone imagery combined with classical 
machine learning algorithms such as SVM and Random 
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Forest have shown encouraging results, particularly for 
oil palm and paddy. However, broader implementation 
remains limited by a lack of localised datasets, 
infrastructure, and policy support.
	 Future work should prioritise the development of 
localised and crop-specific models, integration of diverse 
data sources, and multi-stakeholder collaboration. 
Promoting affordable sensing technologies and improving 
farmer training will be essential for scaling adoption. 
While the technological foundation is well-established 
especially in China realising its full potential in Malaysia 
will require targeted investment in capacity building, 
infrastructure and policy frameworks. Addressing these 
gaps will be critical for advancing digital agriculture and 
enhancing resilience in food production systems.
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